Cours III : Mécanique du solide

4 Energétique des solides

4.1 Puissance et travail

4.1.1 Définitions

Définition:

Soit un solide (S) en mouvement par rapport à un référentiel (R) quelconque et soumis à un champ de forces. On appelle **puissance** par rapport à (R) de cette action mécanique la somme continue des puissances par rapport à (R) des forces élémentaires s'exerçant sur (S) :

$$P_{(R)} = \iiint_{\tau} \overrightarrow{f_{\nu}}(M) \cdot \overrightarrow{\nu}(M)_{(R)} \cdot d\tau$$
 (1)

Avec: P = Puissance en W

τ = Volume du solide en m³

f_v = Actions volumiques exercées sur le solide en N.m⁻³

v(M) = Vitesse du point M en m.s⁻¹

Remarques:

- Si une action est motrice alors P > 0.
- Si une action est résistante alors P < 0.

Définition:

On appelle **travail élémentaire** d'une action mécanique par rapport au référentiel (R) entre les instants t et t + dt :

$$\delta W = P.dt \tag{2}$$

Avec : δW = Travail élémentaire en J

P = Puissance en W

dt = Intervalle de temps en s

On appelle travail d'une action mécanique par rapport au référentiel (R) entre deux instants t₁ et t₂:

$$W_{1\to 2} = \int_{t_1}^{t_2} P.dt \tag{3}$$

Avec: W = Travail en J
P = Puissance en W
dt = Intervalle de temps en s

2012/2013

4.1.2 Applications

4.1.2.1 *Comoment*

Soit (S) un solide en mouvement par rapport au référentiel (R) avec Ω vecteur de rotation instantanée et soumis à une action mécanique de résultante R et de moment M_A .

$$\begin{split} P_{(R)} &= \iiint_{\tau} \overrightarrow{f_{v}}(M).\overrightarrow{v}(M)_{(R)}.d\tau \\ &= \iiint_{\tau} \overrightarrow{f_{v}}(M). \left[\overrightarrow{v}(A)_{(R)} + \overrightarrow{\Omega} \wedge \overrightarrow{AM}\right].d\tau \\ &= \iiint_{\tau} \overrightarrow{f_{v}}(M).d\tau.\overrightarrow{v}(A)_{(R)} + \iiint_{\tau} \overrightarrow{f_{v}}(M). \left[\overrightarrow{\Omega} \wedge \overrightarrow{AM}\right].d\tau \\ &= \overrightarrow{R}.\overrightarrow{v}(A)_{(R)} + \iiint_{\tau} \left[\overrightarrow{AM} \wedge \overrightarrow{f_{v}}(M)\right].d\tau.\overrightarrow{\Omega} \\ &= \overrightarrow{R}.\overrightarrow{v}(A)_{(R)} + \overrightarrow{M_{A}}.\overrightarrow{\Omega} \end{split}$$

La puissance est égale au comoment du torseur des actions et du torseur cinématique :

\longrightarrow \rightarrow	\longrightarrow	
$D = D_{AA}(A)$	$M \cap$	(4)
$P_{(R)} = R.v(A)_{(R)} + 1$	W 2	(4)
-(R)	A	(-)

Avec: P = Puissance en W

R = Résultante des actions mécaniques en N

v(A) = Vitesse du point A en m.s⁻¹

 M_A = Moment en un point A du solide en N.m Ω = Vecteur rotation instantanée en rad.s⁻¹

4.1.2.2 Applications

Couple Γ appliqué à un solide :

$$\vec{R} = \vec{0} \implies P_{(R)} = \overrightarrow{M}_A \cdot \vec{\Omega} = \vec{\Gamma} \cdot \vec{\Omega}$$

Glisseur F appliqué à un solide en B:

$$\overrightarrow{M}_{\scriptscriptstyle B} = \overrightarrow{0} \implies P_{\scriptscriptstyle (R)} = \overrightarrow{R}.\overrightarrow{v}(B)_{\scriptscriptstyle (R)} = \overrightarrow{F}.\overrightarrow{v}(B)_{\scriptscriptstyle (R)}$$

Solide en translation:

$$\overrightarrow{\Omega} = \overrightarrow{0} \implies P_{(R)} = \overrightarrow{R}.\overrightarrow{v}(G)_{(R)} \quad et \quad \delta W = P.dt = \overrightarrow{R}.d\overrightarrow{OG}$$

Solide en rotation autour d'un axe fixe Δ dirigé par $\overrightarrow{u_{\Delta}}$ et de vitesse angulaire Ω , B appartenant à Δ :

$$\vec{v}(B)_{(R)} = \vec{0} \implies P_{(R)} = \overrightarrow{M}_B \cdot \vec{\Omega} = M_\Delta \Omega \quad et \quad \delta W = M_\Delta d\theta$$

4.1.2.3 Puissance des forces intérieures

On suppose dans ce cours que l'on a à faire à un solide indéformable. Le torseur des actions mécanique intérieures au solide est donc nul. Par conséquent, la puissance des actions intérieures à un solide sera nulle.

4.2 Liaison parfaite

4.2.1 Définition

Définition :

Une liaison entre deux solides est dite parfaite si la puissance totale des actions mécaniques de contact est nulle au cours du mouvement des deux solides.

4.2.2 Liaison pivot parfaite

Une liaison pivot est une liaison autorisant uniquement un mouvement de rotation autour d'un axe fixe Δ . On considère un solide (S) lié à un support fixe dans un référentiel (R) par une liaison pivot parfaite.

Dans le cas d'une liaison pivot parfaite autour d'un axe Δ , l'action de liaison a un moment nul par rapport à l'axe Δ :

$$M_{\Lambda}(liaison) = 0$$

4.3 Théorèmes de la puissance et de l'énergie cinétique

4.3.1 Théorème de la puissance cinétique

Soit un solide (S) en mouvement par rapport au référentiel (R). L'énergie cinétique vérifie :

$$\left(\frac{dEc_{(R)}}{dt}\right)_{(R)} = P_{ext_{(R)}} + P_{int}$$
 (5)

Avec : Ec = Energie cinétique du solide en J

P_{ext} = Puissance des actions extérieures en W P_{int} = Puissance des actions intérieures en W

Remarques:

- Le solide étant considéré indéformable, la puissance des actions intérieures est nulle.
- Si le référentiel est non galiléen, il faut rajouter les puissances des forces d'entrainement et de Coriolis. La force d'inertie de Coriolis a une puissance nulle.
- Le théorème de la puissance cinétique est applicable dans le référentiel barycentrique bien que ce référentiel ne soit pas a priori galiléen.

4.3.2 Théorème de l'énergie cinétique

Soit un solide (S) en mouvement par rapport au référentiel (R). L'énergie cinétique vérifie entre les instants t et t + dt et entre deux instants t_1 et t_2 :

$$dEc_{(R)} = \delta W_{ext_{(R)}} + \delta W_{int}$$

$$\Delta Ec_{(R)} = W_{ext_{(R)}} + W_{int}$$
(6)

Avec : Ec = Energie cinétique du solide en J

 δW_{ext} = Travail élémentaire des actions extérieures en J δW_{int} = Travail élémentaire des actions intérieures en J

 W_{ext} = Travail des actions extérieures en J W_{int} = Travail des actions intérieures en J

4.4 Energie potentielle

4.4.1 Définition

Définition:

Une action mécanique appliquée à un solide (S) est conservative ou dérive d'une énergie potentielle Ep, si son travail entre deux états 1 et 2 du système ne dépend pas des positions intermédiaires :

$$\delta W = -dEp$$

$$W_{1\to 2} = Ep_1 - Ep_2$$
(7)

Avec : δW = Travail élémentaire en J

Ep = Energie potentielle en J

W = Travail en J

Remarques:

- Cette définition est valable pour les actions extérieures comme intérieures.
- L'énergie potentielle est définie à une constante près.

4.4.2 Exemples

Exemples:

- Le poids est un glisseur tel que :

$$\vec{R} = m\vec{g}$$
 en G

$$Ep = mgz + cte$$

- La force de rappel d'un ressort est un glisseur tel que :

$$\vec{F} = -k(l - l_0)\vec{u}$$

$$Ep = \frac{1}{2}k(l - l_0)^2 + cte$$

- L'action d'un fil de torsion est un couple tel que :

$$\vec{\Gamma} = -C(\theta - \theta_0)\vec{u_\Delta}$$

$$Ep = \frac{1}{2}C(\theta - \theta_0)^2 + cte$$

4.5 Energie mécanique

4.5.1 Définition

Définition :

L'énergie mécanique est la somme de l'énergie cinétique et de l'énergie potentielle par rapport à un référentiel (R) :

$$Em_{(R)} = Ec_{(R)} + Ep_{(R)}$$
Avec : Em = Energie mécanique en J

Ec = Energie cinétique en J
Ep = Energie potentielle en J

4.5.2 Théorèmes de la puissance et de l'énergie mécanique

Soit un solide (S) en mouvement par rapport au référentiel (R). L'énergie mécanique vérifie :

$$\left(\frac{dEm_{(R)}}{dt}\right)_{(R)} = P_{(R)}(actions\ non\ conservatives)$$

$$dEm_{(R)} = \delta W_{(R)}(actions\ non\ conservatives)$$

$$\Delta Em_{(R)} = W_{(R)}(actions\ non\ conservatives)$$
(9)

Avec : Em = Energie mécanique en J P = Puissance en W δW = Travail élémentaire en J

W = Travail en J

4.5.3 Système conservatif

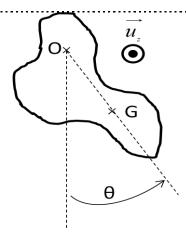
Un système en mouvement dans le référentiel galiléen (R) est conservatif si toutes les actions mécaniques extérieures et intérieurs appliquée à ce système sont conservatives, ou ont une puissance nulle :

$$Em_{(R)} = cte$$

4.6 Solide en rotation autour d'un axe fixe

Exemple: pendule pesant

Soit un solide de masse m pouvant tourner autour d'un axe fixe en O dirigé suivant Oz. La liaison pivot est supposée parfaite. On désigne par JOz le moment d'inertie du solide par rapport à l'axe Oz, θ l'angle entre la verticale et la droite (OG), G le barycentre du solide. On note OG = a.



Théorème de la résultante cinétique :

$$\vec{ma}(G)_{(R)} = \vec{R}_{ext} = \vec{R}(liaison) + \vec{mg}$$

Théorème du moment cinétique :

$$\left(\frac{d\overrightarrow{L}_{O(R)}}{dt}\right)_{(R)} = \overrightarrow{M}_{O(R)} = \overrightarrow{M}_{O(R)} (liaison) + \overrightarrow{M}_{O(R)} (poids) = \overrightarrow{M}_{O(R)} (liaison) + \overrightarrow{OG} \wedge \overrightarrow{mg}$$

$$\left(\frac{dL_{O_{Z(R)}}}{dt}\right)_{(R)} = M_{O_{Z,ext}} = M_{O_{Z}}(liaison) + \left(\overrightarrow{OG} \wedge \overrightarrow{mg}\right).\overrightarrow{u}_{z} = 0 - mga\sin\theta$$

$$J_{O_{Z}} \frac{d^{2}\theta}{dt^{2}} = -mga\sin\theta$$

Si on fait l'approximation des petites oscillations alors :

$$J_{oz} \frac{d^2 \theta}{dt^2} \approx -mga\theta$$

On obtient des oscillations de période :

$$T = 2\pi \sqrt{\frac{J_{oz}}{mga}}$$

Théorème de l'énergie mécanique :

$$\left(\frac{dEm_{(R)}}{dt}\right)_{(R)} = P_{(R)}(actions\ non\ conservatives) = P(liaison) = \overrightarrow{R.v}(0)_{(R)} + \overrightarrow{M_0}.\overrightarrow{\Omega} = 0$$

$$\left(\frac{dEm_{(R)}}{dt}\right)_{(R)} = \left(\frac{d\left(Ec_{(R)} + Ep_{(R)}\right)}{dt}\right)_{(R)}$$

$$= \frac{1}{2}J_{oz}\left(\frac{d\theta}{dt}\right)^2 + \frac{d(mgx_G + cte)}{dt}$$

$$= \frac{d}{dt}\left[\frac{1}{2}J_{oz}\left(\frac{d\theta}{dt}\right)^2\right] + \frac{d}{dt}\left[-mga\cos\theta + cte\right]$$

$$= J_{oz}\frac{d^2\theta}{dt^2} + mga\sin\theta$$

$$= 0$$

On retrouve bien la même expression pour l'équation différentielle satisfaite par θ .

A retenir et savoir faire :

- Savoir exprimer la puissance, le travail des actions mécaniques
- Savoir utiliser les théorèmes de l'énergie cinétique et de l'énergie mécanique en fonction du mouvement du solide.

4.7 Exercices d'application

4.7.1 Etude énergétique d'un moteur

On reprend le moteur décrit en 3.5.1.

- a) De combien de variables dépend l'état du système ?
- b) En déduire l'équation différentielle satisfaite par $\omega(t)$, par application du théorème de la puissance cinétique.
- c) Que devient la puissance fournie par le stator en régime permanent ? Définir le rendement du moteur.

4.8 Exercices

4.8.1 Oscillations d'un demi-disque sur un plan horizontal

On considère un demi-disque (D) homogène, de centre C, de centre de masse G, de rayon R et de masse m. Le référentiel terrestre (Oxyz) est supposé galiléen.

Tout en restant dans le plan vertical (Oxy), le demi-disque roule sans glisser sur le plan horizontal. On désigne par l le point de contact entre le sol et (D) et on repère la position de (D) par l'abscisse x de C et par l'angle $\alpha = (\overrightarrow{CI}, \overrightarrow{CG})$. A l'instant initial, on lâche (D) sans vitesse initiale dans

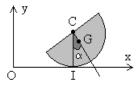
la position $\alpha = \alpha_0$. On démontre que $CG = b = \frac{4R}{3\pi}$.

Le moment d'inertie de (D) par rapport à un axe passant par C perpendiculaire à (D) vaut $J = \frac{1}{2}mR^2$.

Pour trouver le moment d'inertie par rapport au centre de masse G, il faut utiliser le théorème de Huygens :

$$J = J_{Gz} + mb^2$$

- a) Ecrire une intégrale première du mouvement.
- b) En déduire la période des petites oscillations.

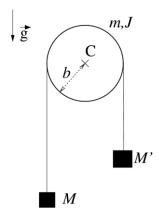


4.8.2 Machine d'Atwood

Une poulie circulaire, de rayon b, de centre C, de masse m, de moment d'inertie J par rapport à son axe, peut tourner librement (sans frottement) autour de son axe horizontal fixe.

Cette poulie supporte grâce à un fil inextensible de masse négligeable, d'un côté un masse M et de l'autre une masse M' supérieure à M. On suppose que le fil ne glisse pas sur la poulie.

Calculer l'accélération de la masse M' en fonction des données de l'énoncé en utilisant l'énergie ou la puissance mécanique.



4.8.3 Mouvement vertical d'un Yo-yo

Un Yo-yo est assimilé à un disque homogène, de masse m, de rayon R, autour duquel est enroulé un fil sans masse. L'autre extrémité du fil est maintenu fixe en O. A l'instant t = 0, on lâche le Yo-yo sans vitesse initiale, le fil étant vertical. On suppose que le fil ne glisse pas sur le disque.

Retrouver à partir de l'énergie cinétique l'équation différentielle du mouvement.

4.8.4 Oscillation d'une barre dans un bol

En utilisant un théorème d'énergie, calculer la période des petites oscillations de la barre AB (homogène de masse m, de longueur 2I = AB et de milieu C), dans un bol fixe en forme de demisphère (centre O, rayon R tel que I < R). Voir figure.

Les contacts entre la barre et le bol sont supposés sans frottement. On supposera que le mouvement de la barre AB est dans le plan de la figure.

