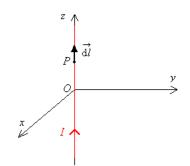
Exercices : Electromagnétisme

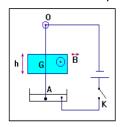
3.3 Exercices d'application

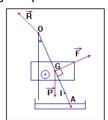

3.3.1 Fil plongé dans un champ uniforme

Soit un fil rectiligne, parcouru par un courant d'intensité I , plongé dans un champ magnétostatique extérieur uniforme $\overrightarrow{B_{ext}}$.

Déterminer la direction et le sens de la force de Laplace élémentaire \overrightarrow{dF} qui s'exerce sur l'élément de courant dI dans les cas suivants ($B_{ext} > 0$, $B_x > 0$, $B_z > 0$):

$$\overrightarrow{B}_{ext} = B_{ext} \overrightarrow{e_x}; \overrightarrow{B}_{ext} = -B_{ext} \overrightarrow{e_x}; \overrightarrow{B}_{ext} = B_{ext} \overrightarrow{e_z};$$


$$\overrightarrow{B}_{ext} = B_{ext} \overrightarrow{e_y}; \overrightarrow{B}_{ext} = B_x \overrightarrow{e_x} + B_z \overrightarrow{e_z}$$



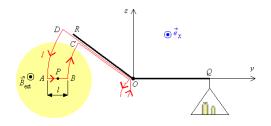
3.3.2 **Appareil de Laplace**

Une tige de cuivre OA, de masse m=8,3 g, homogène, de longueur L=30 cm, peut se mouvoir dans un plan vertical autour de l'axe Δ perpendiculaire au plan de la figure, passant par O. L'extrémité A plonge dans une cuve à mercure qui assure le contact électrique avec le reste du ciruit. Sur une hauteur h=3 cm, la partie centrale de la tige est placée dans un champ magnéitque B uniforme et parallèle à Δ , pointant vers le lecteur.

- 1) Que se passe-t-il quand l'interrupteur K est ouvert ?
- 2) Que se passe-t-il quand l'interrupteur K est fermé?
- 3) Quand I = 10 A, la tige dévie de θ = 5° et reste en équilibre. Faire le schéma. En déduire la valeur de
- B. Comment peut-on réaliser expérimentalement un tel champ magnétique ?

3.3.3 Rotor d'un moteur

Le bobinage du rotor d'un moteur est constitué par un ensemble de fils disposés suivant les génératrices d'un cylindre de rayon R et de hauteur h. Chacun des fils est parcouru par un courant d'intensité I. L'ensemble est placé dans un champ magnétique radial de module identique en tout point.

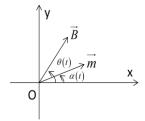

- 1) Quelle est la force de Laplace à laquelle est soumis chaque fil ?
- 2) Le bobinage comporte N fils. Le rotor effectue n tours par seconde. Quelle est la puissance du moteur ainsi constitué ?
- 3) Application numérique : R = 0.1 m; h = 0.3 m; B = 1 T; I = 5 A; N = 800; $n = 30 \text{ tr.s}^{-1}$; Calculer la puissance.

2013/2014

3.4 Exercices

3.4.1 Balance de Cotton

La balance de Cotton est un appareil de mesure du champ magnétostatique. L'un des fléaux est constitué d'un circuit parcouru par un courant d'intensité I et plongé dans le champ magnétostatique $\overrightarrow{B_{ext}}$ à mesurer. Le deuxième fléau permet d'équilibrer la balance à l'aide de masses marquées.


On suppose que:

- le champ magnétostatique est uniforme et donné par $\overrightarrow{B}_{ext} = B_{ext} \overrightarrow{e_x}$; son action se limite à la zone colorée en jaune,
- les deux bras de fléau OR et OQ sont de même longueur et la longueur AB est notée I,
- P est le milieu de AB et OP = OR,
- l'intensité du courant I est mesurée par un galvanomètre.

Etablir l'expression de l'intensité du champ $\overline{B_{ext}}$ que l'on souhaite mesurer en fonction de I, I et la masse m nécessaire pour équilibrer la balance.

3.4.2 Moteur synchrone

Un aimant de moment dipolaire \overrightarrow{m} peut tourner sans frottement dans le plan xOy autour de l'axe Oz. Cet aimant est soumis au champ magnétique tournant $\overrightarrow{B} = \overrightarrow{Bu}(t)$, où le vecteur $\overrightarrow{u}(t)$ fait un angle $\theta(t) = \Omega t + \theta_0$ avec l'axe Ox, et $\Omega \geq 0$ et θ_0 sont des constantes. L'aimant est supposé tourner à la vitesse angulaire constante ω positive.

- 1) Quel est l'angle $\alpha(t)$ entre m et l'axe Ox, en supposant sa valeur initiale nulle ?
- 2) Quel est le couple $\,C_{\mathit{Lapl}}\,$ exercé par le champ magnétique sur le dipôle ?
- 3) A quelle condition sa valeur moyenne est-elle non nulle ? On se placera désormais dans ce cas. Quelles sont les valeurs possibles de θ_0 pour que ce couple soit moteur ?
- 4) L'aimant entraı̂ne une charge en rotation. Le couple exercé par la charge sur l'aimant est supposé constant et noté $-C_u$ avec $C_u \ge 0$. A quelle condition sur C_u le moteur peut-il entrainer cette charge ?
- 5) Dans ce dernier cas, quelles sont les valeurs de θ_0 possibles? Discuter de la stabilité de fonctionnement du moteur dans chacun des cas.

2013/2014 2