Modèle scalaire des ondes lumineuses

Propagation d'une vibration scalaire

Pour une onde électromagnétique polarisée rectilignement, le champ électrique se met sous la forme :

 $\vec{L}_{i}(m,i) - s_{i}(m,i)\vec{u}$ où \vec{u} est le vecteur unitaire dans la direction de polarisation

Définition:

Dans l'approximation de la grandeur scalaire, l'onde lumineuse est décrite l'amplitude lumineuse s(M,t) (en V.m⁻¹)

Amplitude lumineuse d'une onde considérée comme une OPPM d'amplitude s_0 et de **retard de phase** $\varphi(M)$:

$$s(M,t) = s_0 \cos(\omega t - \varphi(M))$$
 où $\varphi(M) = \omega t_r - \varphi_0$

Avec : t_r = temps de propagation de la source S au point M et φ_0 = déphasage initial de l'onde.

Chemin optique

Définition:

Le chemin optique (AB) représente la distance parcourue dans le vide pendant la durée réelle mise pour aller de A à B dans le milieu d'indice n.

Cas particulier:

Si le milieu est homogène (indice optique n constant), la lumière s'y propage en ligne droite comme dans le vide.

Chemin parcouru dans le vide pendant $t_r: (AB) = ct_r = c\frac{AB}{v} = nAB$

Amplitude lumineuse d'une OPPM d'amplitude s_0 et de **retard de phase** arphi(M) dans un milieu d'indice n :

$$s(M,t) = s_0 \cos(\omega t - \varphi(M))$$
 où $\varphi(M) = 2\pi \frac{(SM)}{\lambda} - \varphi_0$

Surface d'onde

Définition:

On appelle **surface d'onde** relative au point source S une surface formée des points M tels que (SM) = constante.

Conséquence :

Entre deux surfaces d'onde, le chemin optique est constant quel que soit le rayon lumineux choisi.

Théorème de Malus (admis) :

Les surfaces d'ondes sont orthogonales aux rayons lumineux, quel que soit le nombre de réflexions ou réfractions subies.

Onde plane, onde sphérique

Une source ponctuelle émet une onde lumineuse sphérique (surface d'onde = sphère). Il y a décroissance en 1/r de l'amplitude.

Cependant, localement, à grande distance de la source, on peut assimiler l'onde sphérique à une **onde plane** (surface d'onde = plan). L'amplitude peut être considérée comme constante.