Expression différentielle des principes thermodynamiques

Premier principe

Il existe une fonction d'état, appelée énergie interne U (en J), extensive, dont la variation au cours d'une transformation finie pour un système fermé est :

$$\Delta U + \Delta E_c = W + Q$$

avec : -W : somme des travaux des actions extérieures reçue par le système en J

- Q : transfert thermique reçu par le système de l'extérieur en J

- E_c : énergie cinétique macroscopique en J

Le premier principe de la thermodynamique lors d'une transformation infinitésimale d'un système fermé s'écrit :

$$dU + dE_c = \delta W + \delta Q$$

dU: variation élémentaire ou infinitésimale de l'énergie interne, entre deux états A et B: $\Delta U = U_B - U_A = \int_{A}^{B} dU$

 δQ : quantité élémentaire ou infinitésimale de transfert thermique, entre deux états A et B: $Q = \int_{A}^{B} \delta Q$

Deuxième principe

Il existe une fonction d'état, appelée **entropie** S (en J.K⁻¹), extensive, dont la variation au cours d'une transformation finie pour un **système fermé**, est :

$$\Delta S = S_{ech} + S_{cré}$$

avec : $-S_{ech}$: l'entropie échangée avec l'extérieur en J.K⁻¹

- $S_{cr\acute{e}\acute{e}}$: l'entropie créée en J.K⁻¹

Le deuxième principe de la thermodynamique lors d'une transformation infinitésimale d'un système fermé s'écrit :

$$dS = \delta S_{ech} + \delta S_{cr\acute{e}\acute{e}}$$

$$\delta S_{ech} = \sum_i \frac{\delta Q_i}{T_i} \,$$
 : entropie élémentaire échangée

Capacités thermiques

Capacité thermique à volume constant, C_V (en J.K⁻¹):

L'énergie interne d'un **gaz parfait** ne dépend que de la température. Première loi de Joule :

Capacité thermique à pression constante, $\,C_{P}\,$ (en J.K⁻¹) :

L'enthalpie d'un **gaz parfait** ne dépend que de la température. Seconde loi de Joule :

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

$$dU = C_V dT$$

$$C_P = \left(\frac{\partial H}{\partial T}\right)_T$$

$$dH = C_P dT$$

Identités thermodynamiques

Première identité thermodynamique

Deuxième identité thermodynamique

$$dU = TdS - PdV$$

Température et pression thermodynamiques d'un système à l'équilibre :

Transformation isentropique d'un gaz parfait

Lois de Laplace :

$$dH = TdS + VdP$$

$$T = \left(\frac{\partial U}{\partial S}\right)_{V} \quad et \quad P = -\left(\frac{\partial U}{\partial V}\right)_{S}$$

$$PV^{\gamma} = cte$$
 ou $T^{\gamma}P^{1-\gamma} = cte$ ou $TV^{\gamma-1} = cte$