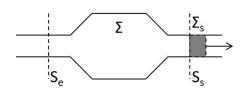

Nom:


Interrogation de cours

1) En utilisant le système suivant, faire un bilan d'énergie entre les instants t et t + dt.

Instant t Système Σ ouvert

+ masse $\, \delta m \,$ dans $\, \Sigma_e \,$ de fluide pénétrant dans $\, \Sigma \,$ pendant dt

Instant t + dtSystème Σ ouvert

+ masse δm dans Σ_s de fluide sortant de Σ pendant dt

A l'instant t, l'énergie totale du système Σ ' est :

$$U_{\Sigma'}(t) + E_{c,\Sigma'}(t) = U_{\Sigma}(t) + E_{c,\Sigma}(t) + U_{\Sigma}(t) + E_{c,\Sigma}(t)$$

A l'instant t+dt, l'énergie totale du système Σ' est :

$$U_{\Sigma'}(t+dt) + E_{c,\Sigma'}(t+dt) = U_{\Sigma}(t+dt) + E_{c,\Sigma}(t+dt) + U_{\Sigma_{c}}(t+dt) + E_{c,\Sigma_{c}}(t+dt)$$

Nous sommes en régime stationnaire, donc : $U_{\Sigma}(t+dt) + E_{c,\Sigma}(t+dt) = U_{\Sigma}(t) + E_{c,\Sigma}(t)$

La variation d'énergie totale dans Σ' pendant dt se ramène donc à :

$$\begin{split} dU_{\Sigma'} + dE_{\mathbf{c},\Sigma'} &= U_{\Sigma'} \big(t + dt \big) - U_{\Sigma'} \big(t \big) + E_{\mathbf{c},\Sigma'} \big(t + dt \big) - E_{\mathbf{c},\Sigma'} \big(t \big) \\ &= U_{\Sigma_{\mathbf{c}}} \big(t + dt \big) - U_{\Sigma_{\mathbf{c}}} \big(t \big) + E_{\mathbf{c},\Sigma_{\mathbf{c}}} \big(t + dt \big) - E_{\mathbf{c},\Sigma_{\mathbf{c}}} \big(t \big) \end{split}$$

Sur une ligne de courant, reliant un point de la surface d'entrée S_e à un point de la surface de sortie S_s , on peut alors écrire : $dU_{\Sigma'} + dE_{c,\Sigma'} = dm \Big(u_s - u_e + e_{c,s} - e_{c,e} \Big)$

2) En partant de ce bilan, démontrer l'expression du premier principe pour un système ouvert.

D'après le premier principe de la thermodynamique : $dU_{\Sigma'}+dE_{c,\Sigma'}=\delta W+\delta Q$

avec
$$\delta Q = q_e dm = \Phi dt$$

avec pour un fluide parfait :

travail des forces de pesanteur : $\delta W_{pes} = -dm \left(e_{pp,s} - e_{pp,e}\right)$

travail des forces pressantes : $\delta W_P = \left(\frac{P_e}{\mu_e} - \frac{P_s}{\mu_s}\right) dm$

travail indiqué : $\delta W_i = w_i dm = \Psi_i dt$

Soit, par unité de masse : $\Delta u + \Delta e_c + \Delta e_{pp} = \left(\frac{P_e}{\mu_e} - \frac{P_s}{\mu_s}\right) + w_i + q_e$

Or, la fonction d'état **enthalpie** qui s'écrit sous la forme : $H = U + PV \implies h = u + \frac{P}{\mu}$ apparaît dans l'équation

précédente, on peut donc la réécrire sous la forme : $\Delta h + \Delta e_c + \Delta e_{pp} = w_i + q_e$

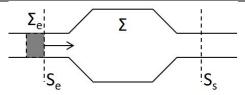
3) Quels termes peuvent être usuellement négligés ? Pourquoi ?

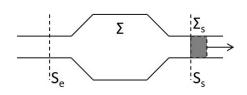
L'énergie thermique nécessaire pour vaporiser un kg d'eau sous pression usuelle ≈ 2200 kJ.

Pour atteindre une valeur comparable :

- avec l'énergie cinétique, il faut une vitesse de 2.10³ m.s⁻¹
- avec l'énergie potentielle de pesanteur, il faut une dénivellation de 200 km

Dans la plupart des cas usuels, les énergies cinétiques et potentielles seront négligeables.


Exceptions: - usine hydroélectrique, on va utiliser l'énergie potentielle de pesanteur


- tuyère de réacteur, on va utiliser l'énergie cinétique

Nom:

Interrogation de cours

1) En utilisant le système suivant, faire un bilan d'énergie entre les instants t et t + dt.

Instant t + dt Système Σ ouvert

+ masse $\,\delta m\,$ dans $\,\Sigma_s\,$ de fluide sortant de $\,\Sigma\,$ pendant dt