Nom:

Interrogation de cours

1) Donner l'expression de la différentielle de la fonction f(x, y, z, t).

$$df = \left(\frac{\partial f}{\partial x}\right)_{y,z,t} dx + \left(\frac{\partial f}{\partial y}\right)_{x,z,t} dy + \left(\frac{\partial f}{\partial z}\right)_{x,y,t} dz + \left(\frac{\partial f}{\partial t}\right)_{x,y,z} dt$$

2) En coordonnées cylindriques, donner l'expression du vecteur position et du vecteur déplacement élémentaire.

$$\vec{r} = \overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z} = \begin{pmatrix} r \\ 0 \\ z \end{pmatrix}_{\Re_{cyl}} \text{ et } d\overrightarrow{OM} = dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta} + z\overrightarrow{u_z} = \begin{pmatrix} dr \\ rd\theta \\ dz \end{pmatrix}_{\Re_{cyl}}$$

3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.

$$f(x) = 1 + \frac{1}{2}x$$
 et $g(x) = 1 + x$

4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume élémentaire.

$$\begin{cases} r = cte & dS = rd\theta dz \\ \theta = cte & dS = drdz & et & dV = rdrd\theta dz \\ z = cte & dS = rdrd\theta \end{cases}$$

5) Soit la fonction mathématique suivante : $s(x, t) = Acos(\omega t - kx)$

Parmi les équations suivantes, la(les)quelle(s) est(sont) juste(s)?

а	$\frac{ds}{dx} = Aksin(\omega t - kx)$	b	$\frac{ds}{dx} = -Aksin(\omega t - kx)$
С	$\frac{ds}{dt} = A\omega sin(\omega t - kx)$	d	$\frac{ds}{dt} = -A\omega sin(\omega t - kx)$

				Réponses	au QCM d	u cours				
N°	1	2	3	4	5	6	7	8	9	10
Réponse(s)	С		a, c	d	b	С	b	b	С	a, b

Nom	:
	-

Interrogation de cours

1) Donner l'expression de la différentielle de la fonction $f(x,y,z,t)$.	
2) En coordonnées cylindriques, donner l'expression du vecteur position et du vecteur déplacement élémentaire.	
-,	
3) Donner la dévelonnement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = g^x$	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
3) Donner le développement limité à l'ordre 1 au voisinage de 0 de : $f(x) = \sqrt{1+x}$ et $g(x) = e^x$.	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume élémentaire.	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume élémentaire.	
4) En coordonnées cylindrique, donner les expressions des différentes surfaces élémentaires et du volume élémentaire.	

 $=A\omega sin(\omega t-kx)$

 $= -A\omega sin(\omega t - kx)$