Nom:

Interrogation de cours

1) Donner l'activité d'un gaz parfait et d'une phase condensée dans un mélange.

gaz parfait : $a_i = \frac{P_i}{P^0}$ avec P_i : pression partielle

phase condensée : $a_i = 1$

2) Donner la relation isobare de Van't Hoff. Si l'enthalpie standard de réaction est constante, l'intégrer entre deux températures T₁ et T₂. Qu'appelle-t-on température d'inversion ?

$$\frac{d \ln K^{0}(T)}{dT} = \frac{\Delta_{r} H^{0}(T)}{RT^{2}}$$

$$d \ln K^{0}(T) = \frac{\Delta_{r} H^{0}(T)}{RT^{2}} dT \Rightarrow \ln K^{0}(T_{2}) - \ln K^{0}(T_{1}) = -\frac{\Delta_{r} H^{0}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

 $K^{0}(T_{i}) = 1$ est température d'inversion = T_{i}

3) Donner la loi de Van't Hoff et l'expliquer.

si la température augmente, il y a déplacement de l'équilibre dans le sens endothermique à pression constante.		
	$\Delta_r H^0 > 0$	$\Delta_r H^0 < 0$
dT > 0	Sens direct →	Sens indirect ←
dT < 0	Sens indirect ←	Sens direct →

Nom:

Interrogation de cours

1) Donner l'activité du solvant et des solutés d'une solution aqueuse.

 $solvant: a_i = 1$

 $solut\'e: a_i = rac{c_i}{c^0}$ avec $c_i: concentration\ molaire$

2) Donner la relation isobare de Van't Hoff. Si l'enthalpie standard de réaction est constante, l'intégrer entre deux températures T_1 et T_2 . Qu'appelle-t-on température d'inversion ?

$$\frac{d \ln K^{0}(T)}{dT} = \frac{\Delta_{r}H^{0}(T)}{RT^{2}}$$

$$d \ln K^{0}(T) = \frac{\Delta_{r}H^{0}(T)}{RT^{2}}dT \Rightarrow \ln K^{0}(T_{2}) - \ln K^{0}(T_{1}) = -\frac{\Delta_{r}H^{0}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

 $K^{0}(T_{i}) = 1$ est température d'inversion = T_{i}

3) Donner la loi de Le Chatelier et l'expliquer.

Si la pression augmente, il y a déplacement dans le sens d'une diminution de la quantité de matière gazeuse à température constante.

temperature constanter		
	$\sum_{i} v_{i,gaz} > 0$	$\sum_{i} v_{i,gaz} < 0$
dP > 0	Sens indirect ←	Sens direct →
dP < 0	Sens direct →	Sens indirect ←