

Nom:

Interrogation de cours

1) En utilisant le système suivant, aboutir à l'expression du premier principe pour un système ouvert

Instant t Système Σ ouvert

Instant t + dt Système Σ ouvert

+ masse δm dans Σ_e de fluide pénétrant dans Σ pendant + masse δm da

+ masse δm dans $\varSigma_{\scriptscriptstyle S}$ de fluide sortant de \varSigma pendant dt

A l'instant t, l'énergie totale du système Σ' est :

$$U_{\Sigma'}(t) + E_{c,\Sigma'}(t) = U_{\Sigma}(t) + E_{c,\Sigma}(t) + U_{\Sigma_{\rho}}(t) + E_{c,\Sigma_{\rho}}(t)$$

A l'instant t+dt, l'énergie totale du système Σ' est :

$$U_{\Sigma'}(t+dt) + E_{c,\Sigma'}(t+dt) = U_{\Sigma}(t+dt) + E_{c,\Sigma}(t+dt) + U_{\Sigma_s}(t+dt) + E_{c,\Sigma_s}(t+dt)$$

Nous sommes en régime stationnaire, donc : $U_{\Sigma}(t+dt)+E_{c,\Sigma}(t+dt)=U_{\Sigma}(t)+E_{c,\Sigma}(t)$

La variation d'énergie totale dans Σ' pendant dt se ramène donc à :

$$dU_{\Sigma'} + dE_{c,\Sigma'} = U_{\Sigma'}(t+dt) - U_{\Sigma'}(t) + E_{c,\Sigma'}(t+dt) - E_{c,\Sigma'}(t)$$
$$= U_{\Sigma_c}(t+dt) - U_{\Sigma_c}(t) + E_{c,\Sigma_c}(t+dt) - E_{c,\Sigma_c}(t)$$

Sur une ligne de courant, reliant un point de la surface d'entrée S_e à un point de la surface de sortie S_s , on peut alors écrire : $dU_{\Sigma'} + dE_{c,\Sigma'} = dm(u_s - u_e + e_{c,s} - e_{c,e})$

D'après le premier principe de la thermodynamique : $dU_{\Sigma'}+dE_{c,\,\Sigma'}=\delta W+\delta Q$

avec $\delta Q = q_e dm = \Phi dt$

avec pour un fluide parfait :

travail des forces de pesanteur : $\delta W_{pes} = -dm(e_{pp,s} - e_{pp,e})$

travail des forces pressantes : $\delta W_P = \left(\frac{P_e}{\mu_e} - \frac{P_s}{\mu_s}\right) dm$

travail indiqué : $\delta W_i = w_i dm = \Psi_i dt$

Soit, par unité de masse : $\Delta u + \Delta e_c + \Delta e_{pp} = \left(\frac{P_e}{\mu_e} - \frac{P_s}{\mu_s}\right) + w_i + q_e$

Or, la fonction d'état **enthalpie** qui s'écrit sous la forme : $H = U + PV \implies h = u + \frac{P}{\mu}$ apparaît dans l'équation précédente, on peut donc la réécrire sous la forme : $\Delta h + \Delta e_c + \Delta e_{pp} = w_i + q_e$

2) Quels termes peuvent être usuellement négligés ? Pourquoi ?

L'énergie thermique nécessaire pour vaporiser un kg d'eau sous pression usuelle ≈ 2200 kJ.

Pour atteindre une valeur comparable :

- avec l'énergie cinétique, il faut une vitesse de 2.10³ m.s⁻¹
- avec l'énergie potentielle de pesanteur, il faut une dénivellation de 200 km

Dans la plupart des cas usuels, les énergies cinétiques et potentielles seront négligeables.

Exceptions : - usine hydroélectrique, on va utiliser l'énergie potentielle de pesanteur

- tuyère de réacteur, on va utiliser l'énergie cinétique

3) Donner l'expression du second principe pour un système ouvert.

En introduisant les entropies massiques échangées s_{ech} , qui rend compte des échanges thermique à travers la frontière, et créées $s_{crée}$, qui rend compte des irréversibilités, on obtient le deuxième principe de la thermodynamique pour un système ouvert : $\Delta s = s_{ech} + s_{crée}$.