Equations de Maxwell

Equations de Maxwell dans le vide

Le **champ électromagnétique** est caractérisé par un couple de vecteurs noté $\{\vec{E}, \vec{B}\}$ où \vec{E} est le vecteur **champ** électrique (V.m⁻¹) et \vec{B} est le vecteur champ magnétique (T).

Ce champ électromagnétique créé au point M à l'instant t par la distribution $\{\rho,\vec{j}\}$ est régi par les quatre **équations** de Maxwell dans le vide.

Formes locales	<u>Formes intégrales</u>
Equation de Maxwell-Gauss (MG):	Validité générale du théorème de Gauss :
$div \vec{E} = rac{ ho}{arepsilon_0}$	$\oint \oint_{\Sigma} ec{E} \cdot \overrightarrow{dS} = rac{Q_{int}}{arepsilon_0}$
Equation de Maxwell-Ampère (MA):	Forme généralisée du théorème d'Ampère :
$\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$	$\oint_{\Gamma} \vec{B} \cdot \vec{dl} = \mu_0 \iint_{S} (\vec{J} + \vec{J_D}) \cdot \vec{dS} avec \vec{J_D} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ avec densité de courant de déplacement $\vec{J_D}$
Equation de Maxwell-Thomson (ou flux) (MT):	Conservation du flux magnétique :
$div\vec{B} = 0$	$\oint\!$
Equation de Maxwell-Faraday (MF):	Phénomène d'induction électromagnétique :
$\overrightarrow{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$e=-rac{d\Phi}{dt}$

Equations de Maxwell dans une région vide de charges et de courants : $\rho = 0$ et $\vec{j} = 0$

$$(MG) \quad div\vec{E} = 0 \quad (MA) \quad \overrightarrow{rotB} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$(MT) \quad div\vec{B} = 0 \quad (MF) \quad \overrightarrow{rotE} = -\frac{\partial \vec{B}}{\partial t}$$

Approximation des régimes quasi-stationnaires (ARQS)

Etude de l'électromagnétisme dans le cas où les temps de propagation sont négligeables devant la période des signaux. Si l'on note τ le temps de propagation du signal et T la période, alors l'ARQS est applicable si $\tau \ll T$.

Equations de Maxwell dans un conducteur, dans le cadre de l'ARQS :

Dans les conducteurs : $\|\vec{j}_D\| \ll \|\vec{j}\|$ (MA) $\overrightarrow{rot}\overrightarrow{B} = \mu_0\overrightarrow{j}$

Cas particulier des régimes stationnaires (ou permanents) :

$$(MG) \quad div\vec{E} = \frac{\rho}{\varepsilon_0} \quad (MA) \quad \overrightarrow{rot}\vec{B} = \mu_0 \vec{J}$$

$$(MT) \quad div\vec{B} = 0 \quad (MF) \quad \overrightarrow{rot}\vec{E} = \vec{0}$$

<u>Equation de Poisson</u>: Equation locale reliant potentiel et

Equation de Laplace : dans une région sans charges : densité volumique de charge : $\Delta V + \frac{\rho}{\varepsilon_0} = 0$ $\Delta V = 0$