Diagrammes d'état des fluides réels purs

Enthalpie de changement d'état

 $\Delta H_{12}(T_S)$: **enthalpie de changement d'état** = énergie thermique que le corps pur de masse m peut emmagasiner ou restituer lors d'un changement d'état.

$$\Delta H_{12}(T_S) = m \times l_{12}(T_S) = m \times \Delta h_{12}(T_S)$$
 avec $l_{12}(T_S) = \Delta h_{12}(T_S)$, l'enthalpie massique de changement d'état

 $\underline{\text{OdG}}$: Enthalpie massique de vaporisation de l'eau sous $P=\overline{10^5Pa}, T=\overline{373K}: l_v(373)=2660kJ. kg^{-1}$ Energie récupérable par transfert thermique lors de la liquéfaction isobare d'un fluide :

$$Q_P = \Delta H = m(h_l(T_S) - h_v(T_S)) = -ml_v(T_S)$$

 $h_{v}(T_{S})$: enthalpie massique du système sous forme de vapeur saturante sèche

 $h_l(T_S)$: enthalpie massique du système sous forme de liquide saturant

 $l_{\nu}(T_{\rm S})$: enthalpie massique de vaporisation du gaz sous la température $T_{\rm S}$

Entropie de changement d'état

L'entropie massique de changement d'état, $\Delta s_{12}(T_S)$, est reliée à l'enthalpie massique de changement d'état par :

$$\Delta s_{12}(T_S) = \frac{\Delta h_{12}(T_{12})}{T_S}$$

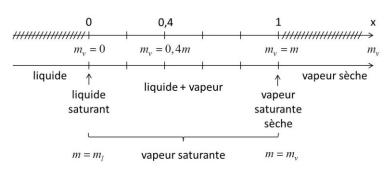
Vaporisation, Fusion, Sublimation : entropie et enthalpie massique de changement d'état positives car demandent un apport de chaleur

Titre massique en vapeur et règle des moments

L'état du corps pur est défini par deux paramètres intensifs : - la pression, P_S , ou la température, T_S

- la proportion de masse de vapeur, $m_{
u}$ ou

Taux de vapeur ou titre massique en vapeur, x:


$$x = \frac{m_v}{m} = \frac{m_v}{m_v + m_l}$$

Règle des moments :

$$v(T_S, x) = v_l(T_S) + (v_v(T_S) - v_l(T_S))x$$

$$h(T_S, x) = h_l(T_S) + (h_v(T_S) - h_l(T_S))x$$

$$s(T_S, x) = s_l(T_S) + (s_v(T_S) - s_l(T_S))x$$

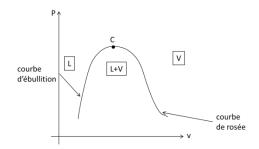


Diagramme de Clapeyron (P,v)

Trois zones peuvent être distinguées qui sont séparées par les courbes de rosée et d'ébullition :

- la zone de liquide seul
- la zone d'équilibre liquide-vapeur
- la zone de vapeur sèche

Le point critique, C, se trouve à la jonction entre les courbes de rosée et d'ébullition.

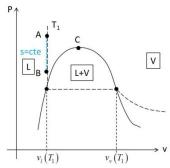
Isothermes:

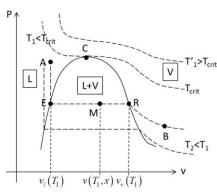
Si $T_1 < T_{crit}$:

- Phase liquide : droite verticale

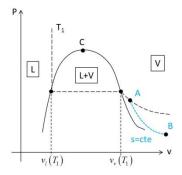
- Système diphasé : droite horizontale

= palier de saturation ou de changement d'état

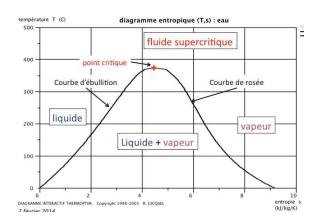

- Phase vapeur: hyperbole ($P = \frac{RT}{Mv}$)


Règle des segments :

$$x = \frac{v(T_S, x) - v_l(T_S)}{v_v(T_S) - v_l(T_S)} = \frac{EM}{ER}$$


Isentropiques:

- Phase liquide : $ds = c \frac{dT}{T}$ = isotherme



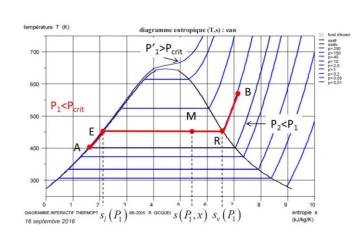
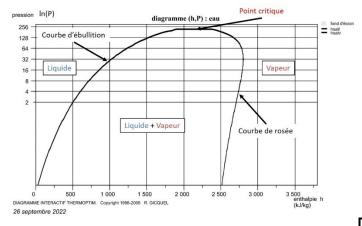
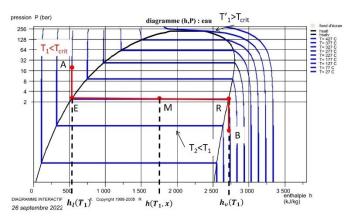

- Phase vapeur: $Pv^{\gamma}=cte$: hyperbole de pente supérieure à celle d'une isotherme.

Diagramme entropique (T,s)



Règle des segments :



$$x = \frac{s(T_S, x) - s_l(T_S)}{s_v(T_S) - s_l(T_S)} = \frac{EM}{ER}$$

Diagramme des frigoristes (P,h)

Règle des segments :

$$x = \frac{h(T_S, x) - h_l(T_S)}{h_v(T_S) - h_l(T_S)} = \frac{EM}{ER}$$

2