Equations de Maxwell

Principe de conservation de la charge

La charge électrique est une **grandeur conservative**. Ce principe se traduit par l'équation locale :

$$div\vec{j} + \frac{\partial \rho}{\partial t} = 0$$

Equations de Maxwell dans le vide

Le **champ électromagnétique** est caractérisé par un couple de vecteurs noté $\{\vec{E}, \vec{B}\}$ où \vec{E} est le vecteur **champ électrique** (V.m⁻¹) et \vec{B} est le vecteur **champ magnétique** (T).

Ce champ électromagnétique créé au point M à l'instant t par la distribution $\{\rho,\vec{j}\}$ est régi par les quatre **équations** de Maxwell dans le vide.

Formes locales	Formes intégrales
Equation de Maxwell-Gauss (MG):	Validité générale du théorème de Gauss :
$div \vec{E} = rac{ ho}{arepsilon_0}$	$\iint_{\Sigma} ec{E} \cdot \overrightarrow{dS} = rac{Q_{int}}{arepsilon_0}$
Equation de Maxwell-Ampère (MA):	Forme généralisée du théorème d'Ampère :
$\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$	$\oint_{\Gamma} \vec{B} \cdot \vec{dl} = \mu_0 \iint_{S} (\vec{J} + \vec{J_D}) \cdot \vec{dS} avec \vec{J_D} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ avec densité de courant de déplacement $\vec{J_D}$
Equation de Maxwell-Thomson (ou flux) (MT):	Conservation du flux magnétique :
$div\vec{B}=0$	$\iint_{S} \vec{B} \cdot \vec{dS} = 0$
Equation de Maxwell-Faraday (MF):	Phénomène d'induction électromagnétique :
$\overrightarrow{rot} \vec{E} = -rac{\partial ec{B}}{\partial t}$	$e=-rac{d\Phi}{dt}$

Cas particulier des régimes stationnaires (ou permanents) :

(MG)
$$div\vec{E} = \frac{\rho}{\varepsilon_0}$$
 (MA) $\overrightarrow{rot}\vec{B} = \mu_0 \vec{J}$ (MT) $div\vec{B} = 0$ (MF) $\overrightarrow{rot}\vec{E} = \vec{0}$